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Abstract

It is interesting to recognize that a nonflat indefinite Kähler–Einstein metric on a torus constructed
by Petean is an example of four-dimensional Walker metrics. We show that generic orientable Walker
metrics in dimension four admit a pair of an almost complex structure and an opposite almost
complex structure, and further consider their integrability, the existence condition of symplectic
structures for these metrics. We shall see that such a family of Walker 4-manifolds contains a class
of indefinite Kähler–Einstein 4-manifolds to which Petean’s metric belongs, examples of indefinite
Hermitian 4-manifolds, and also examples of indefinite almost Kähler 4-manifolds.
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1. Introduction

It is known that the normal form of metrics on a manifold with a field of parallel null planes
of arbitrary dimension has determined by Walker[7,8]. Such a normal form in dimension
four with a field of parallel null 2-planes is the lowest dimensional example. Note that
four-dimensional Walker metrics are neutral, i.e., of indefinite signature (+ + − −). It is
also known that the existence condition for an indefinite metric of signature (+ + − −),
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with the structure group SO0(2, 2), on a 4-manifold is equivalent to the existence of a
nonsingular field of oriented tangent 2-planes, and moreover to the existence of a pair of
an almost complex structure and an opposite almost complex structure on the manifold
[3–5].

From a fact that a nonflat indefinite Kähler–Einstein metric on a torus constructed by
Petean[6] is an example of Walker metrics of certain restricted type, it is interesting to
study two kinds of almost complex structures associated with the four-dimensional Walker
metrics.

In the present note, we shall focus our attention to the Walker metrics of certain restricted
type, and among them we find a class of indefinite Kähler-Einstein metrics which contains
Petean’s example, a class of indefinite Hermitian metrics, a class of indefinite almost Kähler
metrics, and others.

2. Walker metrics in dimension four

A 4-dimensional Walker manifold is a triple (M, g, D) of a four-manifoldM, together
with an indefinite metricg and a nonsingular two-dimensional distributionD such thatD is
parallel and null with respect tog. Such a 4-manifoldM is the lowest dimensional example
among generic Walker manifolds.

From Walker’s theorem ([7, Theorem 1 and Section 6, Case 1]), we see that a canonical
form of g is given by

g = [gij ] =




0 0 1 0

0 0 0 1

1 0 a c

0 1 c b


 , (1)

wherea, b andc are functions of the coordinates (x1, x2, x3, x4). Thusg is of signature
(+ + − −), or neutral. The parallel null two-planeD is spanned locally by{∂/∂x1, ∂/

∂x2}.
From now on we shall restrict our attention to an orientable Walker 4-manifold, i.e., the

structure group of the tangent bundle is the identity component SO0(2, 2) of O(2, 2). A
fundamental fact for our present issue is the following (cf.[3–5]):

Theorem 1. An orientable Walker 4-manifold(M, g, D) admits a pair of an almost complex
structureJ and an opposite almost complex structureJ ′, such thatJ andJ ′ commute with
each other.

3. Nonflat indefinite Kähler metrics on tori as Walker metrics

On a torusT = C/Λ1 × C/Λ2, Petean[6] defined the following Kähler form

Ω = 1
2i(dz ∧ dw̄ + dw ∧ dz̄ + f(w) dw ∧ dw̄), (2)
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wheref(w) is a smooth positive function onC/Λ2 (see Remark below). This gives a nonflat
indefinite Kähler–Einstein metric

g = dz dw̄ + dw dz̄ + f(w) dw dw̄. (3)

Put (z, w) = (x1 + ix2, x3 + ix4), then in terms of real coordinatesΩ andg are written
respectively as

Ω = dx1 ∧ dx4 − dx2 ∧ dx3 + f(x3, x4) dx3 ∧ dx4, (4)

g = 2 dx1 dx3 + 2 dx2 dx4 + f(x3, x4){(dx3)2 + (dx4)2}. (5)

Therefore, the metric tensor [gij ] takes the form

g =




0 0 1 0

0 0 0 1

1 0 f 0

0 1 0 f


 . (6)

It turns out that this metricg is a special case of the Walker metric(1) such that

a = b = f(x3, x4), c = 0. (7)

Remark. The coordinatesz andw in [6, p. 233]are interchanged here, in order for the
metricg in real coordinates coincides with the canonical form(1).

4. Two kinds of almost complex structures

A natural way to construct a pair of an almost complex structureJ and an opposite almost
complex structureJ ′ on a neutral 4-manifold is as follows: choose a local orthonormal basis
{ei}(i = 1, . . . , 4) so that with respect to the basis the neutral metric becomes the standard
form

g = [g(ei, ej)] =




1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


 , (8)

and then defineJ andJ ′ by

Je1 = e2, Je2 = −e1, Je3 = e4, Je4 = −e3, (9)

J ′e1 = e2, J ′e2 = −e1, J ′e3 = −e4, J ′e4 = e3. (10)

It is known thatQ = −JJ′ = −J ′J defines an almost product structure satisfyingQ2 = 1.
Associated with these structuresJ , J ′ andg, we have two kinds of Kähler forms on the

4-manifold as follows:

Ωg(X, Y) = g(JX, Y), Ω′
g(X, Y) = g(J ′X, Y). (11)
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In terms of the local orthonormal basis{ei} of one-forms, these Kähler forms are written
explicitly as follows:

Ωg = e1 ∧ e2 − e3 ∧ e4, Ω′
g = e1 ∧ e2 + e3 ∧ e4. (12)

We must note thatΩg ∧ Ωg = −Ω′
g ∧ Ω′

g = −2e1 ∧ e2 ∧ e3 ∧ e4, and thereforeΩ′
g has

the manifold orientation, butΩg the reversed orientation as the preferred one.
In the present note, we shall consider the Walker 4-manifolds of certain restricted type,

i.e., a case ofc = 0, which includes Petean’s nonflat indefinite Kähler metric on a torus.

5. J , J ′, Ωg and Ω′
g in the case of c = 0

We consider the Walker metrics withc = 0 as follows:

[gij ] =




0 0 1 0

0 0 0 1

1 0 a 0

0 1 0 b


 , (13)

wherea andb are functions of(x1, x2, x3, x4). In this case, we find a local orthonormal
basis{e1, e2, e3, e4} as follows:

e1 = 1
4
√

a2 + 4

{
1

2

(√
a2 + 4 − a

) ∂

∂x1
+ ∂

∂x3

}
,

e2 = 1
4
√

b2 + 4

{
1

2

(√
b2 + 4 − b

) ∂

∂x2
+ ∂

∂x4

}
,

e3 = 1
4
√

a2 + 4

{
−1

2

(√
a2 + 4 + a

) ∂

∂x1
+ ∂

∂x3

}
,

e4 = 1
4
√

b2 + 4

{
−1

2

(√
b2 + 4 + b

) ∂

∂x2
+ ∂

∂x4

}
. (14)

Relative to the above basis, the metric(13)becomes the standard form as in(8).
The almost complex structureJ defined by(9) acts explicitly on the coordinate basis as

follows:

J
∂

∂x1
= K

∂

∂x2
, J

∂

∂x2
= − 1

K

∂

∂x1
,

J
∂

∂x3
= 1

2

(
Ka − b

K

)
∂

∂x2
+ 1

K

∂

∂x4
,

J
∂

∂x4
= 1

2

(
Ka − b

K

)
∂

∂x1
− K

∂

∂x3
, (15)

where we have put

K = 4

√
b2 + 4

a2 + 4
. (16)



Y. Matsushita / Journal of Geometry and Physics 52 (2004) 89–99 93

Similarly, the opposite almost complex structureJ ′ defined by(10) is also a linear operator
onTpM as

J ′ ∂

∂x1
= 1

H

(
−b

∂

∂x2
+ 2

∂

∂x4

)
, J ′ ∂

∂x2
= 1

H

(
a

∂

∂x1
− 2

∂

∂x3

)
,

J ′ ∂

∂x3
= 1

2

(
H − ab

H

)
∂

∂x2
+ a

H

∂

∂x4
, J ′ ∂

∂x4
= −1

2

(
H − ab

H

)
∂

∂x1
− b

H

∂

∂x3
,

(17)

where we have put

H = 4
√

(a2 + 4)(b2 + 4). (18)

For the Walker metric(13) with c = 0, the dual basis{e1, e2, e3, e4} of 1-forms to the
basis(14)of vectors is given by

e1 = 1
4
√

a2 + 4

{
dx1 + 1

2

(√
a2 + 4 + a

)
dx3

}
,

e2 = 1
4
√

b2 + 4

{
dx2 + 1

2

(√
b2 + 4 + b

)
dx4

}
,

e3 = − 1
4
√

a2 + 4

{
dx1 − 1

2

(√
a2 + 4 − a

)
dx3

}
,

e4 = − 1
4
√

b2 + 4

{
dx2 − 1

2

(√
b2 + 4 − b

)
dx4

}
. (19)

Therefore, the basis{ei ∧ ej} for 2-forms is written as follows:

e1 ∧ e2 = 1

H

{
dx1 ∧ dx2 + 1

2

(√
b2 + 4 + b

)
dx1 ∧ dx4

+ 1

4

(√
a2 + 4 + a

) (√
b2 + 4 + b

)
dx3 ∧ dx4

− 1

2

(√
a2 + 4 + a

)
dx2 ∧ dx3

}
,

e1 ∧ e3 = dx1 ∧ dx3,

e1 ∧ e4 = − 1

H

{
dx1 ∧ dx2 − 1

2

(√
b2 + 4 − b

)
dx1 ∧ dx4

− 1

4

(√
a2 + 4 + a

) (√
b2 + 4 − b

)
dx3 ∧ dx4

− 1

2

(√
a2 + 4 + a

)
dx2 ∧ dx3

}
,
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e3 ∧ e4 = 1

H

{
dx1 ∧ dx2 − 1

2

(√
b2 + 4 − b

)
dx1 ∧ dx4

+ 1

4

(√
a2 + 4 − a

) (√
b2 + 4 − b

)
dx3 ∧ dx4

+ 1

2

(√
a2 + 4 − a

)
dx2 ∧ dx3

}
,

e4 ∧ e2 = dx4 ∧ dx2,

e2 ∧ e3 = 1

H

{
dx1 ∧ dx2 + 1

2

(√
b2 + 4 + b

)
dx1 ∧ dx4

−1

4

(√
a2 + 4 − a

) (√
b2 + 4 + b

)
dx3 ∧ dx4

+1

2

(√
a2 + 4 − a

)
dx2 ∧ dx3

}
. (20)

Then, two kinds of Kähler forms in(12) are explicitly written in terms of the coordinate
basis as follows:

Ωg = K dx1 ∧ dx4 − 1

K
dx2 ∧ dx3 + 1

2

(
aK + b

K

)
dx3 ∧ dx4, (21)

Ω′
g = 1

H
(2 dx1 ∧ dx2 + b dx1 ∧ dx4 − a dx2 ∧ dx3)

+ 1

2

(
ab

H
+ aK + b

K

)
dx3 ∧ dx4. (22)

6. Symplectic structures in the case of c = 0
At this stage, we shall consider ifM admits a symplectic structure (dΩg = 0), and the

integrability ofJ . Concerning symplectic structure, we have the following theorem.

Theorem 2. The Kähler formΩg is a symplectic form(dΩg = 0) if the following partial
differential equations hold

∂K

∂x1
= 0,

∂K

∂x2
= 0, K2 ∂a

∂x1
+ ∂b

∂x1
− 2K

∂K

∂x3
= 0,

K2 ∂a

∂x2
+ ∂b

∂x2
+ 2

K

∂K

∂x4
= 0. (23)

In this note, we will not try to find the general solutions for the PDE’s in the above
theorem, but consider some restricted cases. From the theorem, we immediately see that if
K is constant, the first two conditions become trivial, and that the last two conditions reduce
to the following equation:

∂

∂x1
(K2a + b) = 0,

∂

∂x2
(K2a + b) = 0. (24)
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It is clear that ifa andb are constant, then the above two conditions hold too. Therefore,
it is clear thatΩg in (21) andΩ′

g in (22) are both symplectic structures, and thatJ in (15)
andJ ′ in (17)are both integrable. This is a trivial case of the flat Walker metric.

There is a situation such thatK is constant, buta andb are not constant. Such a case occurs
if b2 +4 is a constant multiple ofa2 +4 for a = a(x1, x2, x3, x4) andb = b(x1, x2, x3, x4).
In this case, only the first two conditions ofTheorem 2hold sinceK is constant, but the
conditions(24)may not be satisfied by generica andb.

In what follows, we consider the conditions(24)and integrability ofJ in some cases.

Case I (K is constant, anda = a(x3, x4) andb = b(x3, x4)). In this case, the first two
conditions ofTheorem 2hold, and conditions(24)hold too, sincea andb do not depend on
x1 andx2. Some algebra show that the Nijenhuis tensor ofJ in (15) vanishes, and therefore
J is integrable.

Remark (Einstein condition). Ifa = a(x3, x4) andb = b(x3, x4), then the metric(13) is
of Einstein without any restriction onK, i.e., forK either being constant or nonconstant.

We thus have the following theorem.

Theorem 3. Suppose thatb2 + 4 is a constant multiple ofa2 + 4 for a = a(x1, x2, x3, x4)

and b = b(x1, x2, x3, x4). If a depends only on(x3, x4), then the Walker four-manifold
(M, g, D) admits a symplectic structure, an integrable almost complex structureJ , andg

is of Einstein. Thus, the Walker 4-manifolds of Case I admit an indefinite Kähler-Einstein
structure.

If a andb are functions of(x3, x4) such thatb2 + 4 = C4(a2 + 4) (C: constant), then the
2-form

Ωg = C dx1 ∧ dx4 − 1

C
dx2 ∧ dx3 + 1

2

(
Ca(x3, x4) + b(x3, x4)

C

)
dx3 ∧ dx4 (25)

is an example of the symplectic forms of this type.
The case ofK = 1 occurs ifa = b or b = −a for a = a(x1, x2, x3, x4) andb =

b(x1, x2, x3, x4).

Case II (a(x1, x2, x3, x4) = b(x1, x2, x3, x4)). In this case,Ωg andΩ′
g are not in general

symplectic for generica (= b). This case is, however, important due to the following fact.

Proposition 4. Suppose thata(x1, x2, x3, x4) = b(x1, x2, x3, x4) and c = 0. Then the
Walker four-manifold(M, g, D) admits a complex structure(integrable almost complex
structure).

Proof. Action of J in (15) reduces to the following equation:

J
∂

∂x1
= ∂

∂x2
, J

∂

∂x2
= − ∂

∂x1
, J

∂

∂x3
= ∂

∂x4
, J

∂

∂x4
= − ∂

∂x3
, (26)

which implies thatJ is integrable. �
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Since action ofJ is standard as in (26), the Walker metric can be written in terms of complex
coordinates (z, w) (= (x1 + ix2, x3 + ix4)) as follows:

g = 2 dx1 dx3 + 2 dx2 dx4 + a(x1, x2, x3, x4){(dx3)2 + (dx4)2}
= dz dw̄ + dw dz̄ + a(z, w) dw dw̄, (27)

wherea is a smooth function ofz andw. There exists such an indefinite Hermitian metric on
the four-spaceM = R

4 = C
2, which is an example of noncompact Walker four-manifolds.

There exists also a compact indefinite Hermitian 4-manifold on a complex torusT =
C/Λ1 × C/Λ2, with a metric of the type.

Case III (a(x3, x4) = b(x3, x4)). This is a common case ofCases I and II, i.e.,
Case III= Case I∩ Case II. Therefore, the Walker 4-manifold of the present class admits
an integrable almost complex structureJ and a symplectic structure.

Then we have the following proposition.

Proposition 5. Suppose thata(x3, x4) = b(x3, x4) andc = 0.Then the Walker 4-manifold
(M, g, D) admits an indefinite Kähler–Einstein structure.

The symplectic structure in(25)now becomes

Ωg = dx1 ∧ dx4 − dx2 ∧ dx3 + a(x3, x4) dx3 ∧ dx4

= 1
2i(dz ∧ dw̄ + dw ∧ dz̄ + a(w) dw ∧ dw̄). (28)

We see that the metric in(27)yields

g = 2dx1dx3 + 2 dx2 dx4 + a(x3, x4){(dx3)2 + (dx4)2}
= dz dw̄ + dw dz̄ + a(w) dw dw̄. (29)

This metric can be defined onM = R
4 = C

2, and we have a noncompact nonflat indefinite
Kähler–Einstein 4-manifold. It should be noted that such a metric can be defined also on a
complex torusT = C/Λ1×C/Λ2, and the Walker 4-manifold thus constructed on the torus
is nothing but the nonflat indefinite Kähler–Einstein manifold of Petean (cf.Section 3).

Case IV (a(x1, x2, x3, x4) = −b(x1, x2, x3, x4)). If b(x1, x2, x3, x4) = −a(x1, x2, x3, x4),
then all the conditions inTheorem 2clearly holds without further conditions ona andb.
Therefore,Ωg becomes a symplectic form, and takes the simplest form as

Ωg = dx1 ∧ dx4 − dx2 ∧ dx3. (30)

The metric takes the form

g = 2 dx1 dx3 + 2 dx2 dx4 + a(x1, x2, x3, x4){(dx3)2 − (dx4)2}. (31)
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The action of the almost complex structureJ in (15) reduces to

J
∂

∂x1
= ∂

∂x2
, J

∂

∂x2
= − ∂

∂x1
, J

∂

∂x3
= a

∂

∂x2
+ ∂

∂x4
,

J
∂

∂x4
= a

∂

∂x1
− ∂

∂x3
,

which is not in general integrable for generica = a(x1, x2, x3, x4). It should be noted that
if a (= −b) depends only on(x3, x4) then the metric(31) is of Einstein.

7. Opposite symplectic structures in the case of c = 0

The situation for the opposite Kähler formΩ′
g in (22) is quite different from that of the

Kähler formΩg, as studied in the previous section.
Similarly to Theorem 2, we have the conditions forΩ′

g to be symplectic.

Theorem 6. The opposite pseudo-Kähler formΩ′
g is a symplectic form(dΩ′

g = 0) if the
following partial differential equations hold

H
∂a

∂x1
− a

∂H

∂x1
+ 2

∂H

∂x3
= 0, H

∂b

∂x2
− b

∂H

∂x2
+ 2

∂H

∂x4
= 0,

H

(
K

∂a

∂x1
+ 1

K

∂b

∂x1

)
+

(
b

∂a

∂x2
+ a

∂b

∂x2

)
− 2

∂a

∂x4

+ H

(
a − b

K2

)
∂K

∂x1
− ab

∂H

∂x1
+ 2a

H

∂H

∂x4
= 0,

(
b

∂a

∂x1
+ a

∂b

∂x1

)
+ H

(
K

∂a

∂x2
+ 1

K

∂b

∂x2

)
− 2

∂b

∂x3

+ H

(
a − b

K2

)
∂K

∂x2
− ab

∂H

∂x2
+ 2b

H

∂H

∂x3
= 0. (32)

Here, we will not try to find the general solutions to these conditions. IfH is constant, then
there is a relationb2 + 4 = C4/(a2 + 4) (C: constant), and all the conditions above reduce
to the following equation:

∂a

∂x1
= 0,

∂b

∂x2
= 0,

C

(
K

∂a

∂x1
+ 1

K

∂b

∂x1

)
+

(
b

∂a

∂x2
+ a

∂b

∂x2

)
− 2

∂a

∂x4
+ C

(
a − b

K2

)
∂K

∂x1
= 0,

(
b

∂a

∂x1
+ a

∂b

∂x1

)
+ C

(
K

∂a

∂x2
+ 1

K

∂b

∂x2

)
− 2

∂b

∂x3
+ C

(
a − b

K2

)
∂K

∂x2
= 0. (33)
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Sincea andb must have the same arguments, we have that if∂a/∂xi = 0 then∂b/∂xi = 0
and vice versa. Therefore, the first two condition imply that∂b/∂x1 = 0 and∂a/∂x2 = 0.
Then the last two condition further reduce to∂a/∂x4 = 0 and∂b/∂x3 = 0, which means
thata andb are constant. We have the following proposition.

Proposition 7. If H is constant, thenΩ′
g is a symplectic form if and only if the Walker

metric is flat.

If H andK are both constant, thena andb must be constant, i.e., a flat case.
In Case II(a = b), the action ofJ ′ in (17)becomes

J ′ ∂

∂x1
= 1

H

(
−a

∂

∂x2
+ 2

∂

∂x4

)
, J ′ ∂

∂x2
= 1

H

(
a

∂

∂x1
− 2

∂

∂x3

)
,

J ′ ∂

∂x3
= 2

∂

∂x2
+ a

H

∂

∂x4
, J ′ ∂

∂x4
= −2

∂

∂x1
− a

H

∂

∂x3
. (34)

In this case, integrability ofJ ′ cannot be expected for generica = a(x1, x2, x3, x4). The
conditions in(32)are still complicated, and the symplecticΩ′

g cannot be expected too.

In Case III(a(x3, x4) = b(x3, x4)), even thoughJ is integrable andΩg is symplectic, i.e.,
the Walker four-manifold admits an indefinite Kähler–Einstein structure,J ′ is not integrable
andΩ′

g is still not symplectic. In other words, the Walker 4-manifold admits an indefinite
Kähler–Einstein structure (g, J, Ωg), and an opposite indefinite almost Hermitian–Einstein
structure (g, J ′, Ω′

g).

Final Remark. Walker metrics appear in a natural form in the study of different kinds of
geometric problems, like Osserman condition or uniqueness of the Levi-Civita connection
in the pseudo-Riemannian setting[1,2]. In Case I, for all functionsa(x3, x4), b(x3, x4) these
metrics are Osserman with two-step nilpotent Jacobi operators. This means that they are
Einstein self-dual or Einstein anti-self-dual (cf.[1, Theorem 4.2.5]).

More systematic survey for the generic Walker metrics withc = 0 is desirable.
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I wish to thank Eduardo Garcı́a-Ŕıo for valuable comments, and Seiya Haze, Hiroyuki
Kamada and Peter Law for conversation.

References
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